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A class of high-resolution schemes established in integration of anelastic equations is
extended to fully compressible flows, and documented for unsteady (and steady) problems
through a span of Mach numbers from zero to supersonic. The schemes stem from iterated
upwind technology of the multidimensional positive definite advection transport algo-
rithm (MPDATA). The derived algorithms employ standard and modified forms of the equa-
tions of gas dynamics for conservation of mass, momentum and either total or internal
energy as well as potential temperature. Numerical examples from elementary wave prop-
agation, through computational aerodynamics benchmarks, to atmospheric small- and
large-amplitude acoustics with intricate wave-flow interactions verify the approach for
both structured and unstructured meshes, and demonstrate its flexibility and robustness.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

There is a continuing quest for general (template) algorithms capable of solving incompressible and compressible fluid
equations throughout a range of flow regimes, multiplicity of scales and the variety of applications; e.g. [1–3]. One obvious
motivation is the cost effectiveness resulting from reduced maintenance of unified, large multi-purpose codes in research
and practice; another is an increasingly growing interest in multiscale multiphysics applications crossing boundaries of tra-
ditional disciplinary areas. A particular class of such versatile solvers was developed for simulation of atmospheric flows.
These solvers are built around the high-resolution upwind method MPDATA broadly documented in the literature; see
[4,5] for reviews. Upwind and high-resolution methods have a long history in simulation of compressible flows; see [6]
for a succinct review. Even though MPDATA dates back to the early eighties [7,8], and MPDATA-based fluid solvers to the
early nineties [9,10], the approach was primarily used to solve soundproof (incompressible and anelastic) equations of geo-
physical fluid dynamics on structured grids [4,11]. However, MPDATA solvers should be adaptable to multiphysics applica-
tions and a wide range of flow speeds. Yet apart from [12–14], where we merely expose the potential of the approach, their
applicability to gas dynamics is largely unknown. Here, we complement the earlier work with a study of a family of algo-
rithms for a range of compressible flows, and report our findings on their performance in applications from transient to a
steady-state limit, in calculations representative of elementary acoustics, aerodynamics, and atmospheric flows. To address
such diverse applications, we develop solvers, employing standard and modified forms of the equations of gas dynamics for
conservation of mass, momentum and either total or internal energy as well as potential temperature. While conserving total
energy is standard in engineering applications, conserving potential temperature or internal energy may benefit atmospheric
applications with ambient temperature/density stratification [15,16].
. All rights reserved.
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Placed among high-resolution methods, the MPDATA solvers evince some distinct features [17] desirable in simulation of
compressible flows. Perhaps the most important are the genuine multidimensionality of MPDATA [8], underlying formulation
in curvilinear coordinates [18,10], and easy accuracy-sustaining generalizations to unstructured meshes [19,12,13]. In contrast
to many other nonoscillatory methods, the basic MPDATA is formally second-order accurate in arbitrary dimensional flows, but
only sign preserving rather than monotone. While sign preservation ensures nonlinear stability and together with second-order
accuracy suffices in many applications, monotonicity preservation and enhanced accuracy are available as options [20,21]. Be-
cause of the geophysical heritage, MPDATA solvers were designed to facilitate simulation of turbulent motions with implicit
representations of continuous spectra of dispersive waves. In consequence, the resulting algorithms for governing conservation
laws favor a Newtonian form of the governing PDEs (with accelerations and forces appearing on the left- and right-hand-side,
respectively) rather than the standard form used in simulation of gas dynamics (with forces combined with advective fluxes
under the divergence operator on the rhs). Although equivalent, the two formulations inspire different approximation tech-
niques and accumulate different pools of experience. Consequently, exploiting these distinct features of MPDATA may open
alternative avenues, perhaps as much for engineering applications as for simulation of atmospheric acoustics and compressible
flow responses to localized large-amplitude perturbations (such as volcano eruption; hereafter, ‘‘extreme events” for brevity).

In the following section we summarize the notion of the MPDATA-based methods for fluids. Section 3 presents salient details
of the analytical and numerical aspects of the algorithms customized for compressible flows. Section 4 reports on a range of
benchmark calculations and explores relative merits of the schemes. With bolstered confidence in the integrity and robustness
of the approach, in Section 5, we simulate small- and large-amplitude acoustic wave propagation in complex anisotropic and
inhomogeneous media with intricate wave dynamics. This simulation demonstrates the generality of our approach, as it de-
pends on combining the capabilities of anelastic and compressible solvers. Remarks in Section 6 conclude the paper.

2. Notion of MPDATA flow solvers

2.1. Homogeneous advection equation

Consider first the elementary advection equation
o/
ot
¼ �r � ðV/Þ; ð1Þ
where / ¼ /ðx; tÞ is a scalar field transported with an arbitrary flow V ¼ Vðx; tÞ. Integrating (1) in time and over the volume
of a cell surrounding vertex i results in
/nþ1
i ¼ /n

i �
dt
Vi

XlðiÞ
j¼1

F?j Sj: ð2Þ
Here the summation is over edges connecting vertex i with one of its immediate neighbors j. There are lðiÞ edges connecting
the vertex i with its neighbors, and Sj refers both to the cell face pierced by the jth edge and its surface area; see [12] for
graphic illustrations. Eq. (2) is exact, given /nþ1

i and /n
i are interpreted as the mean values of / within the volume Vi of

the cell containing vertex i; while F?j is interpreted as the mean normal flux through the cell face Sj averaged over temporal
increment dt. The approximation amounts to specifying fluxes F?j in terms of data available on the mesh. In MPDATA, all
fluxes assume the upwind (alias donor cell) functional form
F?j /i;/j;V
?
j

� �
¼ V?j
h iþ

/i þ V?j
h i�

/j; ð3Þ
where
½V �þ � 0:5ðV þ jV jÞ; ½V �� � 0:5ðV � jV jÞ; ð4Þ
and normal velocity V? is evaluated at the face Sj. The nonnegative/nonpositive parts of V?j always coincide with outflow/
inflow from the ith cell.

In its essence, MPDATA is constructed using properties of iterated upwinding. It consists of a series of the first-order up-
wind steps: the first step provides a first-order-accurate solution, and subsequent steps compensate the truncation errors of
the preceding steps, derived analytically from a modified equation analysis [22] of the upwind scheme. This leads to a com-
pact functional form of MPDATA:
/ðkÞi ¼ /ðk�1Þ
i � dt

Vi

XlðiÞ
j¼1

F?j /ðk�1Þ
i ;/ðk�1Þ

j ;V?;ðkÞj

� �
Sj; ð5Þ
with k ¼ 1; . . . ; IORD such that
/ð0Þ � /n; /ðIORDÞ � /nþ1

V?;ðkþ1Þ ¼ V? VðkÞ;/ðkÞ;r/ðkÞ
� �

; V?;ð1Þj � V?jnþ1=2
j :
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In (5), the first iteration uses for arguments of F?j the transported field values from the preceding time step and an Oðdt2Þ
estimate of the velocity at tnþ1=2. Deriving the explicit form of compensating velocity V?;ðkþ1Þ, used in subsequent iterations,
requires assessing the leading truncation error of upwind differencing specified in (2)–(4). A standard approach is to expand
all discrete data into a Taylor series in time and space about a common point ðx; tÞ, and then to represent higher-order tem-
poral derivatives in terms of spatial derivatives. For example, the expansion about the intermediate time tnþ1=2 and point sj

where the edge pierces the face [12] allows to decompose the upwind flux in (3) into a time-centered flux through the face
and the first-order truncation error flux of a predominantly diffusive character
F?j ¼ fV
?/þ Errorgjnþ1=2

sj
; ð6Þ
with Error dominated by Oðdr; dtÞ terms proportional to components of �r/; here dr refers to the characteristic linear size of
the control volume. Noting that the form of the error is an attribute of the functional form of upwind differencing — i.e., it
remains the same for all k in (5) — and writing the error as the advective flux of /, defines the compensating velocity in (5) as
V?;ðkþ1Þ � �ðError=/ÞðkÞ. In particular,
V?
����ðkþ1Þ

sj

¼ 0:5 j V? j 1
j/j

oj/j
or

� �
ðrj� riÞ�0:5 V?

1
j/j

oj/j
or

� �
ðri�2rsj

þ rjÞ�0:5dtV? V � 1
j/jrj/j

� �
�0:5dtV?ðr �VÞ

� �����ðkÞ
sj

;

ð7Þ
where, rðkÞ ¼ ri þ kðrj � riÞ; k 2 ½0;1�. The entire process of estimating the residual error and compensating it can be con-
tinued, iteration after iteration, reducing the magnitude of the truncation error while preserving the sign of transported
variables. In practice, one corrective iteration suffices for recovering the second-order accuracy of time-space centered
schemes.

The analytic expression for basic MPDATA algorithm in (5) and (7) applies to an arbitrary mesh, either structured or
unstructured. The details of representing differential operators in (7) depend on the adopted data structure. Typically they
employ centered differencing commensurate with the mesh. In this paper we employ MPDATA for various meshes and grids.
For details of specific implementations the interested reader is referred to earlier works [8,18,12], and for the guidance to
options (such as monotonicity preservation or higher-order accuracy) extending MPDATA beyond the basic scheme to the
reviews in [4,5].

2.2. Fluid solvers

Derivation of the MPDATA-based schemes for fluids starts with the truncation error analysis of two-time-level approxi-
mations for an archetype inhomogeneous PDE for advection-dominated flows, e.g.
o/
ot
þr � ðV/Þ ¼ R; ð8Þ
in abstraction from any particular assumptions on the nature of physical forcing R and its relation to densities / of dependent
variables, but driven solely by the requirement of the second-order accuracy for arbitrary smooth /ðx; tÞ and transporting
velocity Vðx; tÞ. Assuming availability of a two-time-level nonoscillatory advection scheme that is fully second-order-accu-
rate for the homogeneous counterpart of (8) (viz. MPDATA), one can design a family of model algorithms with different de-
grees of the overall accuracy and complexity [9,10]. Hereafter, for brevity and consistency with nomenclature introduced in
[23], we shall refer to such solvers as NFT, for ‘‘nonoscillatory forward-in-time”.

Extending the truncation error analysis of the homogeneous problem (1) to (8) modifies (6) with the OðdtÞ advective flux
of R on the rhs; i.e.,
F?j ¼ fV
?/þ Erroradv � 0:5dtV?Rgjnþ1=2

sj
; ð9Þ
where Erroradv refers to the error of upwind differencing in (2)–(4). The forcing-related error can be compensated in various
ways [9,10,4]. One, particularly useful for applications, variant of the NFT integral for (8) takes a simple form
/nþ1
i ¼Aið/n þ 0:5dtRn;Vnþ1=2Þ þ 0:5dtRnþ1

i ; ð10Þ
where the transport operator A symbolizes the NFT advection scheme such as MPDATA — e.g. the scheme in (5) — and a
control volume mean Rnþ1 either depends implicitly on problem variables or is an explicit second-order estimate. For sec-
ond-order convergence it would suffice to provide only an OðdtÞ2 estimate, yet with Rnþ1 ¼ Rðt þ dtÞ þ Oðdt3Þ the algorithm
(10) admits explicit schemes for wave propagation with zero amplitude error; see appendix B in [10].

Although (10) may appear as a form of Strang splitting [24], it is indeed an unsplit algorithm that approximates the space-
time control volume integral of (8) as
/nþ1
i ¼ /n

i �
dt
Vi

XlðiÞ
j¼1

fV?/gjnþ1=2
sj

Sj þ 0:5dt Rn
i þ Rnþ1

i

� �
þ dtOðdt2; dtdr; dr2Þ: ð11Þ



36 P.K. Smolarkiewicz, J. Szmelter / Journal of Computational Physics 228 (2009) 33–54
Furthermore, (10) has an illuminating geometric interpretation in a spacetime continuum. Namely, it is congruent with a
trajectory integral of the Lagrangian counterpart of (8)
DJ/
Dt
¼ JR; ð12Þ
evaluated to the second-order accuracy with the trapezoidal rule
/nþ1
i ¼ bJi/o þ 0:5dtð bJiRo þ Rnþ1

i Þ ¼ bJið/þ 0:5dtRÞo þ 0:5dtRnþ1
i ; ð13Þ
along the flow trajectory _x ¼ V connecting mesh-point ðxi; tnþ1Þwith the foot ðxoðxi; tnþ1Þ; tnÞ; the subscript ‘‘o” denotes map-
ping to the foot, akin to advection [25,26]. Recall that the flow Jacobian J � detðox=oxoÞ satisfies the Euler expansion for-
mula D=Dt lnJ ¼ r � V [27], whereupon the solution of (12) for / representing the mass density q is simply qnþ1

i ¼ qo
bJi,

with the inverse flow Jacobian bJ � detðoxo=oxÞ; note that both J and bJ equal unity at the foot. Inspecting (10) versus
(13) reveals that the two schemes are equivalent to Oðdt3Þ as dr ! 0. Here, we mention this congruency only to strengthen
some heuristic arguments and to aid the interpretation of finite-volume solvers (10) used later in this paper. In practice,
however, the congruency of (10) and (13) facilitates the design of unified Eulerian/semi-Lagrangian fluids models [28,29],
and so is useful beyond fostering the interpretation of complicated fluid schemes.

There are two elements defining the solver in (10): (i) the choice of the transport operator A; and (ii) the approach
for evaluating Rnþ1 at the rhs. In principle, any two-time-level advection algorithm can be used for A that is nonlinearly
stable (e.g. nonoscillatory) and at least second-order-accurate for an arbitrary time-independent flow. However, our
numerical experience with advanced fluid models does not extend beyond MPDATA and its derivatives. Notably, among
nonoscillatory schemes MPDATA appears to have unique dissipative properties [17] in mimicking the action of explicit
subgrid-scale turbulence models where flow is underresolved – cf. [30–33] and references therein. This makes MPDATA
methods suitable for direct numerical simulation (DNS) and large-eddy simulation (LES) as well as for implicit LES (ILES)
[11]. This dissipative property of MPDATA plays an important role in handling discontinuities not accounted for in the
derivation of (10). Formally, (10) only provides a means of suppressing numerical oscillations but does not ensure per-
fectly oscillation free solutions. If the latter is required, additional enhancement can be employed [34,35,13]. The eval-
uation of Rnþ1 in (10) depends on the adopted form of the governing PDEs and selection of dependent variables. The
standard formulations of hyperbolic conservation laws via mass, momentum and energy, require iterative determination
of the rhs, yet remain efficient because the transport term Ai in (10) is evaluated only once per time step. In the next
section, we present several solver designs to show the flexibility of the approach. We support theoretical considerations
with numerical examples using both structured and unstructured meshes, to illustrate that the concept of the NFT meth-
ods does not depend on spatial discretization.

3. Compressible flow solvers

3.1. Analytic formulation

From the perspective of the archetype Eq. (8), the mass continuity equation
oq
ot
þr � ðVqÞ ¼ 0 ð14Þ
is distinct among the governing PDEs of ideal gas dynamics, because it is homogeneous for all flows. The conservation of
momenta qI � qVI (for I ¼ 1;2;3) adheres to the form (8) with the pressure-gradient force on the rhs
oqI

ot
þr � ðVqIÞ ¼ � op

oxI
: ð15Þ
Assuming (for simplicity of the presentation) adiabatic processes, laws accounting for conservation of thermodynamic
properties of the fluid can be written alternatively in terms of the internal energy e ¼ qcvT – where T and cv denote,
standardly, the temperature and specific heat at constant volume – or the total energy E ¼ eþ ð1=2ÞqV2, respectively,
as
oe
ot
þr � ðVeÞ ¼ �pr � V ð16Þ
or
oE
ot
þr � ðVEÞ ¼ �r � ðVpÞ: ð17Þ
The latter equation can be written in a modified form
oE
ot
þr � ðeVEÞ ¼ 0; eV � Vð1þ p=EÞ; ð18Þ
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that although mathematically equivalent to (17), motivates alternate realizations of the template algorithm (10).
Yet another form – important for simulating low Mach number flows of compressible stratified fluids, such as planetary

atmospheres – employs an invariant of adiabatic processes h � Tðp=p0Þ
�R=cp , referred to as the potential temperature in the

meteorological literature.1 Here R and cp are the specific gas constant and heat at constant pressure, respectively, and the con-
stant p0 denotes a reference pressure. Defining H � qh, the alternative thermodynamic conservation law takes a simple form
1 The
ideal flu
entropy

2 Con
sound.

3 Con
oH
ot
þr � ðVHÞ ¼ 0: ð19Þ
3.2. Numerical approximations

In order to emphasize numerical commonalities of the considered sets of the governing PDEs – consisting of (14) and (15),
together with either (16)–(18) or (19) – it is convenient to denote the respective vectors of dependent variables ½q;q; e�,
½q;q; E� or ½q;q;H� compactly as U; here q � ½q1; q2; q3�. Consistently, the respective vectors of the associated right-hand-sides
½0;�rp;�pr � V�, ½0;�rp;�r � ðVpÞ�, or ½0;�rp;0� are denoted as R. With this notation, the scalar archetype inhomoge-
neous PDE (8) and the template algorithm (10) can be extended to any of the considered sets of PDEs, respectively, as
oU
ot
þr � ðVUÞ ¼ R; ð20Þ
and
8i Unþ1
i ¼ U�i þ 0:5dtRnþ1

i : ð21Þ
In (21), U� �AðUn þ 0:5dtRn; bVnþ1=2Þ is a shorthand for the first term on the rhs of (10) evaluated independently for each
component of U, and bV � V in all cases except for the integral of the modified total energy Eq. (18) where bV � eV.

Given the availability of a suitable transport operator A, implementing the template (21) requires two specifications: (i) a
first-order estimate of the advecting velocity bV at tnþ1=2; and (ii) a second-order estimate of the rhs R at tnþ1. For bVnþ1=2 one
can use either a linear extrapolation, or a first-order solution to the governing system [10]. Here, we use exclusively the lin-
ear extrapolation bVnþ1=2 ¼ ð1þ bÞbVn � bbVn�1, with b ¼ 0:5ðtnþ1 � tnÞ=ðtn � tn�1Þ. A provision of an Oðdt3Þ estimate of Rnþ1 is
the crux of the approach. Clearly, it depends on the specific problem and admits a number of options. The simplest example
is a realization of (21) for isentropic thermodynamics (19): After solving two advection equations (14) and (19) for q and H,
respectively, evaluating pressure-gradient forces for the rhs of the momentum-component equation (15) follows readily, by
noting that the definition of h and the ideal gas law p ¼ qRT imply p / Hc, with c � cp=cv; see [13] for a detailed discussion
and the demonstration of the second-order convergence on an unstructured mesh.

In general, however, solving any form of the energy equations (16), (17), or (18) implies, effectively, an implicit problem
due to the dependence of pressure on the energy and flow. To proceed in the spirit of the trapezoidal rule, we iterate (21) as
8i Unþ1;l
i ¼ U�i þ 0:5dtRnþ1;l�1

i ; ð22Þ
where l ¼ 1; . . . ;m numbers successive iterations, and the first guess Rnþ1;0 is either a first-order predictor or, simply,
Rnþ1;0 ¼ Rn. Importantly, the computationally-intensive explicit part U�i is evaluated only once per time step – by executing
the advection module prior to (22) – thus remaining fixed during the iteration process. Furthermore, although (22) is for-
mally valid for the components of U with identically vanishing associated rhs, in practice it is executed only for the compo-
nents with nontrivial R.

Formally, the convergence of the iteration in (22) may be argued in terms of the mean value theorem for mappings (in
Banach spaces); e.g. Theorem VII.5.2 in [37]. Normalizing (21) and (22),2 then subtracting from (22) its limit (21), and assum-
ing the differentiability of the mapping RðUÞ ensures
kUnþ1;l �Unþ1k ¼ 0:5dtkRðUnþ1;l�1Þ � RðUnþ1Þk 6 0:5dt sup koR=oUkkUnþ1;l�1 �Unþ1k; ð23Þ
where the supremum is taken along the interval Unþ1;l�1 þ kkUnþ1;l�1 �Unþ1k, with 0 6 k 6 1. The assumed continuity of the
derivative assures that there exist a sufficiently small dt, such that 0:5dt sup koR=oUk < 1, for which (22) converges. On the
other hand, from linear-analysis arguments, the elements of the Jacobi matrix oR=oU represent reciprocals of the character-
istic time-scales of (20); e.g. c=dr.3 Consequently, using dt that satisfies the Courant–Friedrichs–Lewy (CFL) stability condition
for a governing PDE system (20) should suffice for the iteration convergence. Indeed, our numerical experience confirms a rapid
convergence of (22); e.g. the observed values of ðpnþ1;l � pnþ1;l�1Þ decrease by one to two orders of magnitude per iteration,
potential temperature has been introduced by Helmholtz in 1888 as a convenient entropy function for studying atmospheric motions; h ¼ expðs=cpÞ for
ids, where s denotes specific entropy. Nonetheless, it has been also recognized that h embodies a more general idea not necessarily tantamount with
; cf. [36] for an early discussion.
sider dividing (14) by qo, (15) by qoco, (16)–(18) by qoc2

o , and (19) by To; where the subscript o refers to free stream values, and c denotes the speed of

sider a 1D isentropic flow linearized about the quiescent free stream, and assume a single Fourier mode solution with the wave-number k ¼ 1=dr.
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within the first few iterations. Moreover, even with Rnþ1;0 ¼ Rn, m ¼ 2 provides second-order-accurate solutions to (8), while
m ¼ 3 also ensures an Oðdt3Þ estimate of Rnþ1.

The abstract framework of (22) admits sufficient flexibility to accommodate a variety of specific fluid equations and com-
puter program designs. For example, its utility has been demonstrated for nonhydrostatic simulations of anelastic stratified
flows on rotating spheres [38], of viscoelastic biomechanics [39], and more recently of magneto-convection on the Sun [40].
While the principal idea conveyed in (22) is straightforward, the details of the implementation may depend on the form of
the equations employed.

For ideal compressible fluids considered in this study, the homogeneity of mass continuity Eq. (14) dictates qnþ1 � q� in
(22); whereupon, the time-advanced density is obtained readily by employing a second-order-accurate NFT advection
scheme A. For the solvers using either the internal (16) or total energy (17) equations, we construct the first guess Rnþ1;0

from an auxiliary first-order-accurate solution eUnþ1
i of the governing system (20) obtained by reducing (21) to
eUnþ1

i ¼ DiðUn þ dtRn;Vnþ1=2Þ; ð24Þ
where D denotes the generic first-order-accurate upwind scheme – a crude but inexpensive computation. Note that advect-
ing the auxiliary field Un þ dtRn in (24) is congruent with the first-order Euler-forward trajectory integrals of the Lagrangian
counterpart of (20), viz. integrals of the extension of (12) to the vector of dependent variables,
eUnþ1

i ¼ bJiUo þ dt bJiRo ¼ bJiðUþ dtRÞo: ð25Þ
Having available first-order estimates of density, energy, and momenta provides the first guess for pressure ~pnþ1, and thus for
the rhs of the momentum equation. Updating the energy equations – either internal or total – can proceed simultaneously
(viz. within the same loop in a computer program) by employing the first guess of their rhs based solely on the auxiliary first-
order-accurate solution (24); i.e.,
Rnþ1;0
q ¼ �r~pnþ1 ð26Þ
and
Rnþ1;0
E ¼ �r �

eqnþ1eqnþ1
~pnþ1

� �
or Rnþ1;0

e ¼ �~pnþ1r �
eqnþ1

~qnþ1 ;
where tildes refer consistently to first-order predictors, and subscripts at Rnþ1;0 were introduced to denote the conservation
law addressed. Alternatively, the momentum and energy equations can be solved in sequence, such that the first guess of an
energy equation employs the newly updated momenta; i.e.,
Rnþ1;0
q ¼ �r~pnþ1 ð27Þ
but
Rnþ1;0
E ¼ �r � qnþ1;1

qnþ1
~pnþ1

� �
or Rnþ1;0

e ¼ �~pnþ1r � q
nþ1;1

qnþ1 :
Given m P 2 iterations in (22), both options give essentially the same results, while offering some implementation
flexibility. With the auxiliary solution (24), already one successive iteration suffices for the second-order accuracy of
the solutions in (22). The subsequent l ¼ 2 iteration is employed analogously, but with the preceding iterates in lieu
of (24). As pointed out earlier in Section 2, its role is to suppress the amplitude errors in representing wave motions
[10].

The set of conservation laws using the modified form of the total energy Eq. (18) allows for designing even a simpler algo-
rithm. Because it updates both q and E via integrating homogeneous advection Eqs. (14) and (18), respectively, both
qnþ1 � q� and Enþ1 � E�. Consequently, only the momentum-component equations need to be iterated according to (22),
to determine pnþ1;l�1 and its gradient from ðqnþ1;l�1Þ2, qnþ1, and Enþ1. Note that using the linearly-extrapolated modified
transport velocity eVnþ1=2 for advecting E reminisces the Adams–Bashforth trajectory integrals of the Lagrangian ODE that
underlies (17).

The theoretical considerations so far did not address explicitly the conservativity of the approximations discussed. None-
theless, from the construction of the scalar template (10) and its extension to the vector of dependent variables (21), it is
apparent that the resulting abstract framework (22) is in the conservative form (see Section 12.1 in [41]) provided that
all components of R can be written in the conservative form. In such a case, all dependent variables in any region change
only due to the flux through the region boundary, even though the effecting flux function may be quite involving and difficult
to write in a closed form. Among the considered scalar PDEs, all with R � 0, RE ¼ r � ðVpÞ and Rq ¼ �rp ¼ �r � ðprxÞ qual-
ify, because their discrete representations adhere to the finite-volume integral on the rhs of (2). For the PDE sets consisting of
(14) and (15), together with either (17), (18) or (19) the resulting algorithm in (22) is conservative both in the numerical and
physical sense (Section 3.3 in [42]); but, neither can be assured for the set of (14)–(16). In general, the algorithms enforcing
conservation of the total energy receive the most attention, as they encompass theoretically the broadest range of compress-
ible flows. However, for certain flows the alternative formulations may be more adequate. Problems favoring conservation of
H may include smooth flows at low Mach numbers – where all formulations are mathematically equivalent – or even flows
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with discontinuities, when true thermal variations are overwhelmed by truncation errors of numerical schemes. To substan-
tiate the latter, consider that for weak discontinuities, the entropy production proportional to the third power of perturba-
tion pressure (Section 86 in [43]) translates to dh=ho ¼ ðc2 � 1Þ=ð12c3Þðdp=poÞ

3 � 3 � 10�2ðdp=poÞ
3 in air. This value is

negligibly small in atmospheric flows; see Section 5 for illustration. For similar reasons, the use of special internal energy
based schemes [44] is preferred for flows with very high Mach numbers, where the accuracy of pressure evaluation becomes
obscured by large kinetic energies.

3.3. Implementation

The general idea of MPDATA methods and the particular template algorithm (10) or (21), are independent of the spa-
tial discretization. To illustrate this flexibility of the approach, we demonstrate results from two distinct implementa-
tions using: (i) a structured data for single-block grids; and (ii) an edge-based data for hybrid structured and
unstructured meshes.

Our first implementation is an extension to compressible flows of the EUlerian–LAGrangian (EULAG) model for fluids [29],
established in simulation of multiscale geophysical flows [45–47,11,48]. Because EULAG uses continuous mappings for
Cartesian grid adaptation to either curvilinear boundaries or flow features, the governing PDE (8) evinces additional com-
plexity due to its tensorial formulation [45,49,46]. Consequently, it is technically more convenient to iterate the momentum
and the energy equations in sequence, in the spirit of (27). The tensorial formulation of EULAG assumes homeomorphic map-
pings. This allows for precise representation of smooth time-dependent curvilinear geometries, while offering fast execution
of numerical operations and relative simplicity of massive parallelization of the model code. However, for problems with
complex geometry and/or multiply-connected domains a single-block mesh and homeomorphic mappings offer limited
capabilities, and a more flexible unstructured/hybrid meshing is favoured.

Our second implementation uses the edge-based unstructured mesh code with a dual-mesh finite-volume discretization.
This approach circumvents theoretical complexity of tensorial formulation, by integrating the generic physical form of the gov-
erning PDE over arbitrarily-shaped cells. Furthermore, it admits flexible adaptivity of the discretization to the problem geom-
etry and/or flow topology, lending itself well to various mesh adaptivity techniques [12,13]. The inherent theoretical simplicity
of the edge-based discretization (free of metric coefficients, multitude of velocity forms, and transformed differential opera-
tors) allows for a straightforward realization of (22) by updating the momenta and energy in parallel, in the spirit of (26).

4. Benchmark calculations

4.1. Spherical acoustic wave; zero Mach number limit

Statements appear in the literature implying that upwind approximations are inadequate for simulating propagation of
acoustic modes. While this may be true for some upwind schemes, one should withhold generalizations as upwinding may
take different forms and operate on a variety of auxiliary dependent variables. In particular, MPDATA is constructed using
properties of upwinding, yet it is capable of simulating difficult problems of wave dynamics. For substantiation, we elaborate
on the paraphrase [14] of the classical problem of a spherical sound wave propagation; Problem 1 in Section 70 of [43]. The
problem considers ‘‘a sound wave in which the distribution of density, velocity and other flow variables, depends only on the
distance from some point.” It employs the spherical wave equation for the velocity potential in the zero free stream Mach
number limit. Assuming an initial sphere of radius ro is compressed so that density excess q0 ¼ dq ¼ const for r 6 ro and
q0 � 0 otherwise, the problem allows the analytic solution (away from the initial disturbance region) in the form of the
spherical shell of thickness 2ro, located at r 2 ½cot � ro; cot þ ro�, where co denotes the speed of sound (constant). Within
the shell, q0 ¼ 0:5ðr � cotÞdq=r; whereupon the gas is compressed in the outer portion of the shell r > cot and rarefied in
the inner portion r < cot. Fig. 1 shows the analytic and NFT solutions for an arbitrarily specified initial condition and time
t. An isothermal hemispherical density excess of q0=qo ¼ 0:082 with radius ro ¼ 0:2 m, is centered at the bottom of the
6:38� 6:38� 3:19 m3 domain. A free stream flow with co ¼ 340:3 ms�1 is assumed to be at rest. The domain is discretized
with 319� 319� 159 uniform grid intervals dx ¼ dy ¼ dz ¼ 0:02 m; whereby, ro ¼ 10dx. Numerical integrations of the posed
initial value problem are carried with various options of the EULAG model [Eqs. (16), (17) and (19)] using constant temporal
increment dt ¼ 10�5s. Boundary conditions are periodic in x and y and rigid in z. Notably, the three EULAG options give indis-
tinguishable results. This is not surprising, as pressure and density perturbations are proportional in this flow regime, so the
three solutions should only depend on the mass continuity and momentum equations.

In the absence of a significant free stream flow (here v � coq0=qo), the first term on the rhs of the equality in (22) reduces,
virtually, to its linear kernel; that is, a centered-in-space (and time, as l%1) approximation for (20). The resulting algo-
rithm is dispersive [10], and the smooth solution in Fig. 1 is achieved by enhancing diffusivity of the first-order-accurate up-
wind advection with an Oðdx2Þ residual, in the spirit of the flux-corrected transport (FCT) methods (see Appendix A for a
discussion). To further illustrate the properties of MPDATA-based NFT schemes, we alter the classical problem, by introduc-
ing a uniform free stream flow with velocity uo ¼ co=3. Fig. 2 highlights numerical results with a display of the normalized
pressure perturbation p0=po after time t ¼ 720dt, for the isentropic solution using the thermodynamic conservation law (19).
The two curves shown in Fig. 3 complement Fig. 2 with the corresponding results using (16) and (17) instead. The selected
time of the figures is long – e.g. one order of magnitude longer than in the Sod benchmark [50] – purposely, to emphasize the



Fig. 1. Spherical sound wave (M ¼ 0), normalized pressure perturbation dp ¼ ðp� poÞ=po after t 	 ro=co (ro is the initial perturbation radius): (top) 3D NFT
result in the xy plane at z ¼ 0 with superimposed induced flow (max kdvk ¼ 0:6 ms�1); (bottom) dp at y ¼ z ¼ 0 for the analytic solution (solid line) and the
three NFT results using Eqs. (16), (17) and (19) (dashed lines).
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symmetry, amplitude and phase errors; here cot ¼ 12:25ro ¼ 2:45 m. Except for the value of the free stream flow, this same
specification applies to the classical wave propagation problem highlighted in Fig. 1.

Due to the Galilean invariance the modified problem should yield the same solution as the classical problem in the ref-
erence frame translating with uo. Indeed, the result in the top plate of Fig. 2 shows spherical wave propagating radially with
co, away from the center translating with the free stream flow.4 The lower plate of Fig. 2 supplements the latter result with the
display of normalized pressure perturbation along x at y ¼ z ¼ 0. Unlike in the lower plate of Fig. 1 only numerical solutions are
4 We do not show xz cross sections as for all solutions discussed they are indistinguishable from the upper half of the xy images at z ¼ 0.



Fig. 2. Spherical sound wave in M ¼ 1=3 free stream flow: (top) isolines of normalized pressure perturbation dp with superimposed perturbation flow
dv ¼ ðu� uo; vÞ vectors (max kdvk ¼ 0:6 ms�1), in the xy plane at z ¼ 0 for the NFT solution using H Eq. (19); (bottom) corresponding dp along x at y ¼ z ¼ 0.
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shown, and the range of the ordinate accordingly reduced. From the two complementary curves in Fig. 3, the one for the cal-
culations using the internal energy Eq. (16) closely matches the isentropic result in Fig. 2. However, the solid curve for the cal-
culation using the total energy Eq. (17) is distinct. The differences between the three solutions are small compared to the
difference between all numerical solutions and the theoretical linear estimate, cf. Fig. 1; yet the solution using (17) is clearly
more dissipative. Comparing the results in Figs. 2 and 3 with the results in Fig 1, shows a slight symmetry breaking in the mod-
ified problem, reflecting the lack of the Gallilean invariance – tantamount to the Courant-number dependence of the truncation
error – typical of common second-order advection schemes [20,21]. Here, we used the basic MPDATA scheme with monotonic-
ity-preserving option, and further improvements are possible [4,5]. We shall address some of them as well as the physical sig-
nificance of the inaccuracies observed, later in the paper.



Fig. 3. As in lower plate of Fig. 2 but for the NFT solution using the total (solid line) and internal (dashed line) energy Eqs. (17) and (16), respectively.
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4.2. Subsonic flow past a cylinder

The problem represents subsonic steady-state flow past a cylinder, with a free stream initial condition at Mach number
M ¼ 0:38. The theoretical solution is potential flow, characterized by zero lift and drag; Section 11 in [43]. This test was orig-
inally considered in the proceedings from the GAMM workshop held at INRIA Rocquentcourt [51], for the polar 128� 33
(4224 points) O-grid. The grid points are angularly equidistributed on 33 concentric circles with consecutive radii starting
at r1 ¼ 0:5 and increasing according to
rj ¼ 0:5 1þ
Xj�2

k¼0

ak 2p
128

" #
; j ¼ 2; . . . ;33; a ¼ 1:1648336;
so r33 ¼ 20 at the outer boundary. Fig. 4 juxtaposes the model grid and 20 Mach number contours in the ½0;1� range for the
computations using the modified total-energy Eq. (18). The respective pressure coefficient – Cp � ðp� poÞ=0:5qov2

o, at y ¼ 0
away from the cylinder and along the upper and lower surface at the cylinder — is displayed in Fig. 5. The corresponding
solutions for (16), (17) and (19) are not shown, because their departures from the results in Figs. 4 and 5 are insignificant.
In all four cases, the single-precision values of the lift and drag coefficients ranged, respectively, from 3 � 10�6 to 1 � 10�6

and from 8 � 10�5 to 6 � 10�5, attesting to a round-off error accuracy of numerical solutions. Visually, our plots compare
well with those shown in [51] (cf. contributions by Dandone et al., Lerat et al., Pandolfi et al., Satofuka et al., and Thomas
Fig. 4. Flow past a cylinder, M ¼ 0:38: (left) computational mesh; (right) Mach number contours, for the modified total-energy Eq. (18).



Fig. 5. As in Fig. 4 but for the pressure coefficient.
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et al.), especially when taking into account that the test is sensitive to the accurate representation of the surface geometry.
Our computations use the edge-based finite-volume discretization, which approximates the shape of cylinder by 128-sided
polygon. The use of conformal mapping and curvilinear coordinates, like in some computations included in [51], would in-
crease the accuracy.

Additional results with the edge-based solver were obtained on a triangular, fully unstructured mesh with background
spacing purposely similar to that employed in [51] and visually resembling the mesh used in [52]. The mesh was optimised
to avoid stretched triangles. It consists of 3773 points, with only 81 boundary points representing the cylinder.

Table 1 compares all our solutions with those published in [52], also obtained on unstructured meshes. It contains the
resulting min/max values for local Mach number, pressure p=po and entropy deviation R ¼ ðs� soÞ=so. The upper portion
of the table shows the results obtained using selected thermodynamic conservation laws for the MPDATA-based NFT
schemes. In the lower portion, we list the corresponding results from Table 3 in [52] generated using MUSCL, the Abgrall’s
blended and Roe LDA high-resolution schemes.

The MPDATA results are consistent with the other schemes and appear to improve on the MUSCL results in terms of the
numerical generation of entropy and the symmetry preservation (not shown). The MPDATA solutions obtained for different
Table 1
Flow past a cylinder

Mach (Min, Max) Pressure (Min, Max) R (Min, Max)

Equations; MPDATA
Structured 128 � 33 O-grid
Internal energy (16) 0.00000, 0.91 0.64, 1.11 �0.00002, 0.00021
Total energy (17) 0.00000, 0.91 0.62, 1.11 �0.00005, 0.00081
Total energy (18) 0.00000, 0.91 0.63, 1.11 �0.00022, 0.00125
Potential temp. (19) 0.00000, 0.91 0.62, 1.11 0.00000, 0.00001

Unstructured triangular mesh
Internal energy (16) 0.00001, 0.90 0.64, 1.11 �0.00037, 0.00053
Total energy (17) 0.00000, 0.90 0.63, 1.11 �0.00098, 0.00247
Total energy (18) 0.00000, 0.90 0.63, 1.11 �0.00130, 0.00406
Potential temp. (19) 0.00000, 0.90 0.62, 1.11 �0.00005, 0.00005

Scheme; after [52]
MUSCL 0.0001, 0.82 0.67, 1.10 �0.0004, 0.048
Abgrall’s blended 0.0001, 0.89 0.64, 1.11 0.0, 0.009
LDA 0.0, 0.94 0.62, 1.10 �0.001, 0.010



sets of conservation laws indicate minimal differences between the computations in the min/max Mach number and pres-
sure values. Noteworthy is a low level of entropy, any nonzero value of which is spurious for the isentropic flow considered
[52]. The results using the potential temperature equation show that the departure from the free stream value is at the level
of round-off error. For the remaining computations the maximum and minimum entropy variations are also very low. How-
ever, the presence of negative values of R demonstrates that although nonlinearly-stable and robust, the NFT as well as the
MUSCL and LDA solutions are not literally oscillation free. The option of MPDATA used here assures merely the monotonicity
of advection [12] and employs no additional filtering, neither in the spirit of Section 4.1 nor in the spirit of synchronized
limiting for systems of inhomogeneous PDEs [34,35,13].

4.3. Transonic flow

The performance of the outlined NFT algorithms is illustrated next for a steady-state transonic flow over an airfoil – the
AGARD test case 04 for the NACA0012 airfoil at Mach number M = 0.8 with incidence angle a ¼ 1:25
 [53] that requires
simultaneous capturing of both strong and weak shocks. The edge-based data structure permits an arbitrary shape of com-
putational cells, therefore we use the same code but employ two distinctly different meshes shown in Fig. 6. The triangular
mesh consists of 16101 computational points with 323 points along the airfoil. The quadrilateral C-mesh mesh consists of
30329 computational points with 328 points along the airfoil. Near the airfoil, both meshes use spacing close to that of the
structured O-mesh employed in the AGARD test case. In the far field, placed at the distance of 20 chords, boundary conditions
are specified from the free stream values or extrapolated from the Riemann invariants, depending on the character of the
flow, super- or subsonic, and inflow versus outflow. On the surface of the airfoil a free-slip condition is assumed.



Fig. 8. As in Fig. 7 but for the structured mesh shown in the right panel of Fig. 6.
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Figs. 7 and 8 show the standard display of the surface pressure coefficient Cp for the triangular and quadrilateral mesh,
respectively, together with the corresponding values of the lift and drag coefficients. The MPDATA results obtained for the
standard (17) and modified (18) total-energy thermodynamic conservation laws are compared, showing very close agree-
ment and the sharp (one-point only) shock capturing. Additionally, the MPDATA solutions are compared with the Jameson
Runge–Kutta scheme [54]. Results from structured and unstructured meshes show that MPDATA gives a much sharper pres-
sure jump on the weaker lower surface shock (located in the region of higher wall curvature). Results for both meshes also
indicate less diffusive capturing of the upper shock in MPDATA.

As in the earlier tests, the presented MPDATA solutions use the monotone option of the scheme in the form detailed in
[12]. This option limits the advection velocity used in corrective upwind passes and it is uncoupled for various transported
variables. Consequently, without further enhancements, residual oscillations in the vicinity of shocks can appear, as illus-
trated in Fig. 9. In practice, such oscillations are often suppressed by addition of a pressure-switch-controlled Oðdx2Þ artifi-
cial-viscosity term [54]. In MPDATA schemes these oscillations can be removed more straightforwardly by using a switch-
controlled reduction of antidiffusive fluxes in (5); see Appendix in [13]. In effect, at the shock only, the first-order-accurate
solution is not fully corrected to the second-order. This enhancement was used to generate solutions in Figs. 7 and 8, but it
has been purposely disabled in the calculations presented in the corresponding Fig. 9, to highlight the differences between
the NFT algorithms based on the standard and modified forms of the total energy equation. It can be observed that the results
obtained using the modified form are less oscillatory, most likely because of the more effective use of the monotonicity con-
straints in this construction of the MPDATA-based NFT scheme.

A close agreement between the MPDATA results for (17) and (18) forms of total-energy equation was additionally con-
firmed for the transonic flow over the NACA0012 airfoil at Mach number M ¼ 0:85 with incidence angle a ¼ 1:0
 [53,51]. The
lift coefficient for this problem is known to be very sensitive to the geometrical representation of the airfoil surface and dif-
ficult to compute accurately [55]. Despite using a coarse unstructured mesh, Fig. 10, consisting of 3938 computational points
with 141 points along the airfoil, the surface pressure coefficients for both forms (17) and (18) show correct, and with one-
Fig. 9. Surface pressure coefficient for NACA0012 airfoil; M ¼ 0:8, a ¼ 1:25
 . MPDATA results with disabled shock dissipation highlighting differences
between the standard and modified total-energy MPDATA based schemes, on triangular (left) and quadrilateral (right) mesh.



point only, capturing of strong shocks on the upper and lower surfaces, Fig. 11. The corresponding pressure contour plot is
shown in Fig. 10, for the standard total-energy Eq. (17).

The computed aerodynamic coefficients for both benchmarks are consistent with results published in the literature
[51,53]. All calculations used general purpose edge-based MPDATA solvers without any customized treatments for airfoils.
An inclusion of the airfoil’s surface curvature effects [55], or vortex correction in the far field boundary condition [53] is likely
to enhance the accuracy.

4.4. Supersonic flow past a wedge

The results of simulations of supersonic flow over a 15
 wedge obtained using two NFT algorithms are compared in
Fig. 12 with the theoretical estimation. One algorithm is based on the standard total-energy while the other on the mod-
ified total-energy conservation law. The pressure coefficient Cp is used for comparison. For this problem, Cp ¼ 0:354 down-
stream of the shock is estimated from theoretical formulae; pages 754–757, Section 9 in [56]. The corresponding
computed values for all wall boundary points placed downstream of the shock are: Cp 2 ½0:3347;0:3561� for the standard
energy equation (17), and Cp 2 ½0:3331;0:3587� for the modified form (18). The minuscule differences between the solu-
tions most likely reflect differences in imposing the monotonicity constraints and effects of additional shock treatment in
a form of a pressure-switch-controlled reduction of MPDATA antidiffusion. Both solutions are in a very good agreement
with the theoretical estimation. An angle b between the shock and the horizontal can be theoretically evaluated using
Eq. (9.22) in [56], i.e.,



Fig. 12. 15o wedge at M ¼ 2:5: (left) the theoretical estimate and MPDATA solution for the total energy equation (TE); (right) comparison of the TE result
with corresponding MPDATA solution for the modified total energy equation (MTE).

Fig. 13. Pressure contours MPDATA total energy results (left) and adapted computational mesh (right) for 15
wedge at
tanðb� boÞ
tan b

¼ 2þ ðc� 1ÞM2 sin2 b

ðcþ 1ÞM2 sin2 b
;

where bo is the wedge angle, bo ¼ 15
. For M ¼ 2:5 and c ¼ 1:4, the theoretical value of the angle b is 36.95. The computed
values for both algorithms are identical and equal 36.2. Fig. 13 shows pressure contour plots for the standard total energy
solution. Pressure contours obtained with the modified total energy equation are practically identical. The computations
used the adapted mesh, also shown in Fig. 13, which was obtained using remeshing and the MPDATA-based error indicator
[13].

This test case shows that MPDATA effectively resolves supersonic flows. We have successfully repeated the test for higher
Mach numbers, up to M ¼ 15. Other examples presented in Sections 4.1, 4.2 and 4.3 illustrate the efficacy of the approach for
sub- and transonic flows. Note that MPDATA already has a proven record of successful applications for low speed flows
[4,31,11]. In the next section we take advantage of the congruity of the template algorithm (10) for the compressible and
anelastic flows, and blend the present development with the EULAG’s established low-speed anelastic solver to demonstrate
the potential of the approach for research of environmental acoustics and extreme events.
M ¼2:5.
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5. Extensions to complex media

All examples in Section 4 assume simple homogeneous isotropic media. Such an assumption is sound for small-scale
problems, the characteristic scales of which are much smaller than the scales of the medium variability. For gas dynamics
of natural atmospheric flows on scales of Oð103Þm and larger, the variability of ambient temperature, density and wind
may need to be accounted for; cf. Chap. 4.6 in [57]. Depending upon the flow regime and focus of interests, this may favor
alternate formulations of the thermodynamic conservation laws. Here, we extend earlier considerations to atmospheric
mesoscale flows with characteristic length scales Oð104Þm, and apply the proposed approach to simulation of small and
large amplitude acoustic wave phenomena in the framework of the EULAG model. Furthermore, we contrast the solutions
realized in variable environments with highly idealized results of Section 4.1, to assess the significance of the disparities be-
tween different model formulations and of the solution errors.

The problem posed involves propagation of sound and blast waves in a turbulent strongly stratified orographic flow, and
thus blends large- and small-amplitude hyperbolic and dispersive wave dynamics [58]. It is solved in the spirit of so-called
secondary application models [59], where an application of interest is driven by an output of a different model. In particular,
the anelastic equations [given below in (28)] are employed to generate a fully developed atmospheric flow, which is then
used to design initial conditions for simulation of acoustic phenomena with the compressible equations of gas dynamics.
The parameters of an undisturbed (ambient) atmosphere are selected purposely to develop a highly inhomogeneous and
anisotropic flow. Namely, the ambient stratification is prescribed as S � d ln heðzÞ=dz ¼ 1:47 � 10�5 m�1 up to 12 km, but
aloft it increases to reflect the isothermal continuation of the ambient potential temperature he. This mimics the thermody-
namic structure of the troposphere and lower stratosphere region. At z ¼ 0, the surface temperature and potential temper-
ature are both assumed 288.15 K, and the surface density is 1.225 kg=m3. The ambient wind is ueðzÞ ¼ 10 m/s up to 12 km,
but decreases aloft at the rate due=dz ¼ �0:49 � 10�3 s�1. In the troposphere, the imposed wind and stratification support
vertically propagating gravity waves with the vertical wavelength 2pue=N � 6:3 km, where N ¼ ðgSÞ1=2 is the buoyancy fre-
quency and g denotes the acceleration of gravity. Furthermore, in the stratosphere, there is a critical level for this wave at
z � 14 km, where wave absorption proceeds via small-scale overturning and turbulence [60]. To excite the wave, a smooth
hill is embedded in the ambient flow. The hill is superposed from two cosine profiles f ðxÞ ¼ ho0:5ð1þ cosðpx=LÞÞwith height
ho ¼ 2:4 km, and left and right half-width L equal 4.8 and 14.4 km, respectively. The corresponding Froude number
Fr � ue=Nho ¼ 0:35 indicates violent gravity wave breaking above the mountain with associated windward blocking and se-
vere wind storms in the lee [61].

Fig. 14 shows the intricate initial condition for a 2D (cylindrical) variation on the spherical acoustic wave theme of Section
4.1; cf. Section 71 of [43]. An isothermal circular density excess of q0 ¼ 0:1 kg=m3 with radius ro ¼ 400 m, is placed at the
crest of the hill. The flow shown in Fig. 14 was generated with the anelastic equations of Lipps and Hemler [62], the default
option in EULAG. In lieu of (14), (15) and (19) the governing laws for conservation of mass, momentum and thermodynamic
properties take the form
r � ðVqoÞ ¼ 0;

oqoVI

ot
þr � ðVqoVIÞ ¼ �qo

o~p
oxI
þ gqo

h0

ho
dI3;

oqoh
ot
þr � ðVqohÞ ¼ 0:

ð28Þ
Here, qo and ho denote the density and potential temperature of a horizontally homogeneous static reference state. For dis-
cussions of benefits of differentiating between the reference ‘‘o”and ambient ‘‘e” states, and for examples, see [47,48,29]. The
reference state assumes constant stratification So ¼ H�1 ln½heðHÞ=ðheð0Þ�, with H denoting the depth of the domain;
hoð0Þ ¼ heð0Þ and qoð0Þ ¼ qeð0Þ. Furthermore, ~p ¼ p0=qo, and primes denote perturbations with respect to the ambient state.
The anelastic Eqs. (28) are cast in the terrain-following curvilinear framework [49,63] and integrated using the same tem-
plate algorithm (10), yet with a fully implicit rhs, thus requiring the solution of an elaborate elliptic pressure equation. Inte-
grations are carried for one hour of the simulated time with dt ¼ 0:5 s, starting from the ambient thermodynamics and initial
flow Vðx; t ¼ 0Þ ¼ ðue;0Þ � rX with potential X determined from elliptic PDE implied by the mass continuity in (28) and the
boundary conditions imposed. For recent reviews of relevant numerical details see [47,63]. The 2H � H ¼ 52 � 26 km2 do-
main is discretized with 1279 � 639 grid intervals. The top and lateral boundaries are open, and a free-slip impermeable
boundary is assumed at the lower surface of the model.

In general, the anelastic equations prognose potential temperature and velocity but diagnose pressure in the spirit of
incompressible models. Consequently, the initial state of the atmosphere for compressible calculations is readily available
only for V and h. Assuming an initial p0 equal to the anelastic value, the actual density q is approximated using the linearized
ideal gas law
1
c

p0

po
¼ h0

ho
þ q0

qo
: ð29Þ
Next, the model is restarted as a compressible option of EULAG with the governing Eqs. (14), (19) and (15), cast in the same
terrain-following coordinates. The instantaneous state of the atmosphere described above is perturbed with a small density





Fig. 15. Solution aftert�1 min; contouring convention is the same as in Fig. 14.
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excess discussed earlier and shown in Fig. 14. Furthermore, the momentum Eq. (15) is augmented to include the buoyancy
term; that is
oqI

ot
þr � ðVqIÞ ¼ � op0

oxI
� gq0dI3: ð30Þ
The compressible model is then integrated for over one minute with dt ¼ 0:02 s, 25 times smaller than for the anelastic cal-
culations. The representative solution is shown in Fig. 15 after t ¼ 57:6s.

Inspection of the result in Fig. 15 and its comparison with the initial condition in Fig. 14 shows that despite the severe
winds and substantial variability of the environment, the acoustic wave propagates, in essence, as in a frozen atmosphere
and retains predominant features of the idealized reference solution for a homogeneous still medium (not shown). The ob-
served departures from the symmetry of the reference solution are all due to interaction with the large scale flow and irreg-
ular lower boundary. This has been corroborated by conducting a supplementary study starting with the idealized reference
run and gradually complicating it towards the case discussed. Although relatively small, the observed symmetry breakdowns
far exceed those due to truncation errors discussed in Section 4.1.

Finally, we augment the previous example, by allowing the small isothermal density excess to be also 1000 K hotter than
the environment, thus mimicking a volcano eruption. Fig. 16 shows the result corresponding to the small-amplitude event in
Fig. 15. With the larger wave energy, the effects of wave mean-flow interaction become more visible. In particular, the
anisotropy of pressure perturbation in the vertical, related to the density decay with height by about the factor of 30 over
the model depth, is clearly seen in the stratosphere; cf. Section 106 in [43]. Furthermore, many details of the resulting solu-
tion may be argued from the principle of wave-action conservation along the rays, Chap. 4.6 in [57]. However, there are two
details important from the perspective of numerical approximation. First, note that the acoustic mode is clearly visible in u
and p fields at all depths, but is hardly detectable in contours of h. This is consistent with the discussion at the end of Section
3.2. Taking a representative stratospheric value of dp=po � 0:05 from the central panel of Fig. 16, gives dh=ho � Oð10�6Þ gen-
erated at the flow discontinuity. In a stably stratified atmosphere, the equivalent isentrope displacement
g � ðdh=hoÞS�1

o � Oð10�1Þm. This is two and four orders of magnitude smaller than the assumed grid interval and the moun-
tain-induced isentropic displacements, respectively. Second, note a small thermal appearing right above the crest of the hill
in the upper plate. When solving the problem in terms of the total energy (not shown), the fine features (rolls) of the thermal
are dissipated – consistently with the results of Section 4.1 – whereas the gross aspects of the solution appear the same. To-
gether this demonstrates the merits of alternate model formulations.

6. Remarks

We discussed the construction of a new class of the MPDATA solvers. The generality and flexibility of the concept, already
proven for incompressible and anelastic flows and Cartesian meshes, is further corroborated with the new schemes custom-
ized for compressible flow simulations. Moreover, the numerical examples illustrate the suitability of the approach for
unstructured meshes. The experience from the two models – one using Cartesian and one edge-based data type of meshes
– shows that the schemes are insensitive to the details of implementation.

Four sets of conservation laws have been integrated using the general NFT framework (10). Their applicability depends
on the specific gas dynamics problem. In particular, for subsonic cases, although all four results indicate low implicit dif-
fusion, the simplest potential temperature based algorithm gives the minimum. For transonic and supersonic cases either
the standard or the modified (homogeneous) total energy equations can be readily used. Both total-energy models give
virtually identical results with narrow shocks. For transonic flows, a one-point oblique shock capturing on structured and
unstructured meshes attests to the multidimensionality of the MPDATA solvers. We are not aware of earlier consider-
ations of the total energy conservation equation written in the homogeneous form of the advection equation. Its imple-
mentation within the NFT framework results in an especially simple and efficient model. The representation of the total
energy equation in an advection form (18) may prove beneficial in development of other types of solvers for gas
dynamics.

Our results demonstrate the validity of the approach for a range of compressible flows from zero to supersonic Mach
numbers. This extends the utility of MPDATA solvers to a variety of interdisciplinary applications, including the simulation
of environmental acoustics and atmospheric responses to localized large-amplitude perturbations. In environmental gas
dynamics the effects due to the anisotropy and inhomogeneity of the media (together with uncertainty of the initial and
boundary conditions) appear to supersede disparities of various theoretical formulations. Because the preferred formulations
of atmospheric fluid equations are still in debate [64], having a suite of schemes operating on various thermodynamic con-
servation laws is advantageous.

Among several demonstrated merits of the approach, the most distinctive appears to be its universal robustness, evi-
denced by the ability to provide consistently stable and accurate results throughout the spectrum of flows, irrespectively
of the discretization details and types of computational meshes. The close affinity of particular NFT schemes has important
implications. First, it facilitates designing of alternative fluid models for multiscale, multiphysics flows. Second, it minimizes
uncertainties associated with ad hoc code comparisons, thus enabling unerring analysis of alternate theoretical formulations
of complex fluid systems; see [38,48] for examples.
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Appendix A. Filtering with MPDATA

For an elementary 1D advection problem
ow
ot
þ ouw

ox
¼ 0 ð31Þ
with constant velocity u, the modified equation resulting from the donor cell approximation to (31) can be written as
ow
ot
þ ouw

ox
¼ o

ox
1
2
ðjujdx� u2dtÞ ow

ox

� �
: ð32Þ
In MPDATA, at each time step the action of the error term on the rhs of (32) is compensated by repeating the donor cell step,
but using the newly updated w and the antidiffusive velocity
eu ¼ 1
2
ðjujdx� u2dtÞ 1

jwj
ojwj
ox

; ð33Þ
in lieu of the initial w and physical velocity u; for technical exposition see [4,5] and references therein. Clearly, as juj & 0 the
dissipative term on the rhs of (32) vanishes, and the implicit viscosity of the upwind scheme becomes insignificant. In appli-
cations of (8) with forcing R leading to dispersive oscillations in the numerical representation (10), it may be desirable to
enhance diffusivity of the first donor cell step in MPDATA. In the spirit of the FCT methods — cf. appendix in [65] — we
add a small explicit Fickian flux Kow=ox in the generic donor cell step, to compensate for it in the subsequent corrective iter-
ation. Such an explicit diffusion augments the modified Eq. (32), resulting in
ow
ot
þ ouw

ox
¼ o

ox
1
2
ðjujdxþ 2K � u2dtÞ ow

ox

� �
: ð34Þ
The action of the explicit dissipation can be reverted to Oðdt; dxÞ with minimal modifications to standard MPDATA schemes;
simply by replacing (33) with
eu ¼ 1
2
ðjujdxþ 2K � u2dtÞ 1

jwj
ojwj
ox

; ð35Þ
in the subsequent, corrective upwind step.
The outlined procedure is merely a practical guideline on how to adapt a useful element of the FCT technology to the

MPDATA framework. Its universal utility, however, still needs to be explored. Similarly as with explicit subgrid-scale turbu-
lence models, selections of K will depend on the problems at hand and details of numerics. In the simulation of the acoustic
wave propagation in Section 4.1, we employ K ¼ bdx2=dt, with constant b ¼ 0:02 — one order of magnitude smaller than the
value quoted in [65]. With dt / dx, the explicit diffusion enters (34) as an OðdxÞ correction, whereupon its reversal in the cor-
rective donor cell step leaves an Oðdx2Þ residual. Formally, this appears to admit second-order convergence along the lines of
constant codt=dx < 1 in a low Mach number flow regime.
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